If $a^3 + b^6 = 2$, then the maximum value of the term independent of $x$ in the expansion of  $(ax^{\frac{1}{3}}+bx^{\frac{-1}{6}})^9$ is, where $(a > 0, b > 0)$

  • A

    $42$

  • B

    $68$

  • C

    $84$

  • D

    $148$

Similar Questions

If the term independent of $x$ in the exapansion of $\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}$ is $k,$ then $18 k$ is equal to

  • [JEE MAIN 2020]

Find a positive value of $m$ for which the coefficient of $x^{2}$ in the expansion $(1+x)^{m}$ is $6$

The coefficient of $x^{10}$ in the expansion of $(1 + x)^2 (1 + x^2)^3 ( 1 + x^3)^4$ is euqal to

  • [JEE MAIN 2018]

If the coefficients of second, third and fourth term in the expansion of ${(1 + x)^{2n}}$ are in $A.P.$, then $2{n^2} - 9n + 7$ is equal to

The coefficient of $x^{-5}$ in the binomial expansion of ${\left( {\frac{{x + 1}}{{{x^{\frac{2}{3}}} - {x^{\frac{1}{3}}} + 1}} - \frac{{x - 1}}{{x - {x^{\frac{1}{2}}}}}} \right)^{10}}$ where $x \ne 0, 1$ , is

  • [JEE MAIN 2017]