7.Binomial Theorem
normal

If $a^3 + b^6 = 2$, then the maximum value of the term independent of $x$ in the expansion of  $(ax^{\frac{1}{3}}+bx^{\frac{-1}{6}})^9$ is, where $(a > 0, b > 0)$

A

$42$

B

$68$

C

$84$

D

$148$

Solution

$r=\frac{3}{\frac{1}{3}+\frac{1}{6}}=6$

$Tr + 1 = T6 + 1 = {\,^9}{c_6}{a^3}{b^6} = 84{a^3}{b^6}$

$A \geq G$

$\frac{a^{3}+b^{6}}{2} \geq \sqrt{a^{3} b^{6}}$

$1 \geq a^{3} b^{6} \Rightarrow a^{3} b^{6} \leq 1$

So $84 a^{3} b^{6} \leq 84$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.