7.Binomial Theorem
hard

The natural number $m$, for which the coefficient of $x$ in the binomial expansion of $\left( x ^{ m }+\frac{1}{ x ^{2}}\right)^{22}$ is $1540,$ is

A

$19$

B

$3$

C

$13$

D

$18$

(JEE MAIN-2020)

Solution

$T_{ r +1}={ }^{22} C _{ r }\left( x ^{ m }\right)^{22- r }\left(\frac{1}{ x ^{2}}\right)^{ r }=22 C _{ r } x ^{22 m – mr -2 r }$

$=22 C _{ r } x$

$\because 22 C _{3}=22 C _{19}=1540$

$\therefore r =3$ or 19

$Z 2 m – mr -2 r =1$

$m =\frac{2 r +1}{22-5}$

$r =3, \quad m =\frac{7}{19} \notin N$

$r =19, m =\frac{38+1}{22-19}=\frac{39}{3}=13$

$m =13$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.