3 and 4 .Determinants and Matrices
normal

જો $P\left( \theta  \right) = \left[ {\begin{array}{*{20}{c}}  1&{\cot \theta } \\   { - \cot \theta }&1 \end{array}} \right]$ અને  $PQ$ = $I$, તો $\left( {\cos e{c^2}\theta } \right)Q$  (કે જ્યાં $I$ એ $2×2$ કક્ષાનો એકમ શ્રેણિક છે .)

A

$P\left( \theta  \right)$

B

$P\left( { - \theta } \right)$

C

$P\left( {2\theta } \right)$

D

$I$

Solution

$Q = {P^{ – 1}} = \frac{{\left[ {\begin{array}{*{20}{c}}
1&{ – \cot \theta }\\
{\cot \theta }&1
\end{array}} \right]}}{{\cos e{c^2}\theta }}$

$\therefore {\rm{Q}}cose{c^2}\theta  = {\rm{P}}( – \theta )$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.