- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
If $P\left( \theta \right) = \left[ {\begin{array}{*{20}{c}} 1&{\cot \theta } \\ { - \cot \theta }&1 \end{array}} \right]$ and $PQ$ = $I$, then $\left( {\cos e{c^2}\theta } \right)Q$ (where $I$ is an identity matrix of $2×2$ order)
A
$P\left( \theta \right)$
B
$P\left( { - \theta } \right)$
C
$P\left( {2\theta } \right)$
D
$I$
Solution
$Q = {P^{ – 1}} = \frac{{\left[ {\begin{array}{*{20}{c}}
1&{ – \cot \theta }\\
{\cot \theta }&1
\end{array}} \right]}}{{\cos e{c^2}\theta }}$
$\therefore {\rm{Q}}cose{c^2}\theta = {\rm{P}}( – \theta )$
Standard 12
Mathematics