If $f\left( x \right) = {\left( {2x - 3\pi } \right)^5} + \frac{4}{3}x + \cos x$ and $g$ is the inverse of $f$, then $g'\left( {2\pi } \right)$  = ?

  • A

    $\frac{7}{3}$

  • B

    $\frac{3}{7}$

  • C

    $\frac{{30{\pi ^4} + 4}}{3}$

  • D

    $\frac{3}{{30{\pi ^4} + 4}}$

Similar Questions

Consider $f:\{1,2,3\} \rightarrow\{a, b, c\}$ and $g:\{a, b, c\} \rightarrow$ $\{$ apple, ball, cat $\}$ defined as $f(1)=a$, $f(2)=b$,  $f(3)=c$,  $g(a)=$ apple, $g(b)=$ ball and $g(c)=$ cat. Show that $f,\, g$ and $gof$ are invertible. Find out $f^{-1}, \,g^{-1}$ and $(gof)^{-1}$ and show that $(gof)^{-1}=f^{-1}og^{-1}$

If $f:[1,\; + \infty ) \to [2,\; + \infty )$ is given by $f(x) = x + \frac{1}{x}$ then ${f^{ - 1}}$ equals

  • [IIT 2001]

It is easy to see that $f$ is one-one and onto, so that $f$ is invertible with the inverse $f^{-1}$ of $f$ given by $f^{-1}=\{(1,3),(3,2),(2,1)\}=f$

If $f(x) = 3x - 5$, then ${f^{ - 1}}(x)$

  • [IIT 1998]

Let $S=\{a, b, c\}$ and $T=\{1,2,3\} .$ Find $F^{-1}$ of the following functions $F$ from $S$ to $T$. if it exists.  $F =\{( a , 3),\,( b , 2),\,( c , 1)\}$