3 and 4 .Determinants and Matrices
normal

If ${\left\{ {\left( \begin{gathered}
  3\,\,1\,\,2 \hfill \\
  8\,\,9\,\,5 \hfill \\
  1\,\,\,1\,\,3 \hfill \\ 
\end{gathered}  \right)\,\left( \begin{gathered}
  1\,\,3\,\,3 \hfill \\
  3\,\,2\,\,7 \hfill \\
  3\,\,7\,\,9 \hfill \\ 
\end{gathered}  \right)\left( \begin{gathered}
  3\,\,8\,\,1 \hfill \\
  1\,\,\,9\,\,1 \hfill \\
  2\,\,5\,\,3 \hfill \\ 
\end{gathered}  \right)} \right\}^2}\, = \,\left( \begin{gathered}
  a_1\,\,a_2\,\,a_3 \hfill \\
  b_1\,\,b_2\,\,b_3 \hfill \\
  c_1\,\,c_2\,\,c_3 \hfill \\ 
\end{gathered}  \right)$ 

then the value of $|a_2 - b_1| + |a_3 - c_1| + |b_3 - c_2|$ is

A

$0$

B

$1$

C

$2$

D

$3$

Solution

$\mathrm{x}=\left(\mathrm{ABA}^{\mathrm{T}}\right)^{2}\{\mathrm{B} \text { is symmetric }\}$

$\mathrm{X}^{\mathrm{T}}=\mathrm{X} \Rightarrow \mathrm{B}^{2}$ symmetric hence required value

$=0$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.