3 and 4 .Determinants and Matrices
medium

Let $M$ be any $3 \times 3$ matrix with entries from the set $\{0,1,2\}$. The maximum number of such matrices, for which the sum of diagonal elements of $M ^{ T } M$ is seven, is .............

A

$512$

B

$556$

C

$560$

D

$540$

(JEE MAIN-2021)

Solution

$\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]\left[\begin{array}{lll}a & d & g \\ b & e & h \\ c & f & i\end{array}\right]$

$a^{2}+b^{2}+c^{2}+d^{2}+e^{2}+f^{2}+g^{2}+h^{2}+i^{2}=7$

Case$-I$ : Seven $(1's)$ and two $(0's)$

${ }^{9} C _{2}=36$

Case$-II$ : One $(2)$ and three $(1's)$ and five $(0's)$

$\frac{9 !}{5 ! 3 !}=504$

$\therefore$ Total $=540$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.