If $\overrightarrow A \times \overrightarrow B = \overrightarrow C ,$then which of the following statements is wrong

  • A
    $\overrightarrow C \, \bot \,\overrightarrow A $
  • B
    $\overrightarrow C \, \bot \,\overrightarrow B $
  • C
    $\overrightarrow C \, \bot \,(\overrightarrow A + \overrightarrow B )$
  • D
    $\overrightarrow C \, \bot \,(\overrightarrow A \times \overrightarrow B )$

Similar Questions

Vector $A$ is pointing eastwards and vector $B$ northwards. Then, match the following two columns.
Colum $I$ Colum $II$
$(A)$ $(A+B)$ $(p)$ North-east
$(B)$ $(A-B)$ $(q)$ Vertically upwards
$(C)$ $(A \times B)$ $(r)$ Vertically downwards
$(D)$ $(A \times B) \times(A \times B)$ $(s)$ None

The two vectors $\vec A$ and $\vec B$ that are parallel to each other are

$\overrightarrow A $ and $\overrightarrow B $ are two vectors given by $\overrightarrow A  = 2\widehat i + 3\widehat j$ and $\overrightarrow B  = \widehat i + \widehat j$. The magnitude of  the component (projection) of $\overrightarrow A$ on $\overrightarrow  B$ is

What is the product of two vectors if they are parallel or antiparallel ? 

The area of the parallelogram represented by the vectors $\overrightarrow A = 2\hat i + 3\hat j$ and $\overrightarrow B = \hat i + 4\hat j$ is.......$units$