The angle between the two vectors $\overrightarrow A = 5\hat i + 5\hat j$ and $\overrightarrow B = 5\hat i - 5\hat j$ will be ....... $^o$
$0$
$45$
$90$
$180$
${\vec A }$, ${\vec B }$ and ${\vec C }$ are three non-collinear, non co-planar vectors. What can you say about directin of $\vec A \, \times \,\left( {\vec B \, \times \vec {\,C} } \right)$ ?
If $\left| {\vec A } \right|\, = \,2$ and $\left| {\vec B } \right|\, = \,4$ then match the relation in Column $-I$ with the angle $\theta $ between $\vec A$ and $\vec B$ in Column $-II$.
Column $-I$ | Column $-II$ |
$(a)$ $\vec A \,.\,\,\vec B \, = \,\,0$ | $(i)$ $\theta = \,{0^o}$ |
$(b)$ $\vec A \,.\,\,\vec B \, = \,\,+8$ | $(ii)$ $\theta = \,{90^o}$ |
$(c)$ $\vec A \,.\,\,\vec B \, = \,\,4$ | $(iii)$ $\theta = \,{180^o}$ |
$(d)$ $\vec A \,.\,\,\vec B \, = \,\,-8$ | $(iv)$ $\theta = \,{60^o}$ |
If $\vec{a}$ and $\vec{b}$ makes an angle $\cos ^{-1}\left(\frac{5}{9}\right)$ with each other, then $|\vec{a}+\vec{b}|=\sqrt{2}|\vec{a}-\vec{b}|$ for $|\vec{a}|=n|\vec{b}|$ The integer value of $n$ is . . . . . . ..
Two adjacent sides of a parallelogram are represented by the two vectors $\hat i + 2\hat j + 3\hat k$ and $3\hat i - 2\hat j + \hat k$. What is the area of parallelogram
Vector product of two vectors $2\hat i\, + \,\hat j\,$ and $\hat i\, + \,2\hat j\,$ is