14.Probability
normal

જો $12$ ભિન્ન દડાઓ ને $3$ ભિન્ન પેટીમા મુકવામા આવે તો કોઇ એક પેટીમા બરાબર $3$ દડાઓ હોય તેની સંભાવના મેળવો.

A

$\frac{4}{{19}}$

B

$\frac{{55}}{3}{\left( {\frac{2}{3}} \right)^{11}}$

C

$\frac{{\left( {428} \right){}^{12}{C_3}}}{{{3^{11}}}}$

D

$\frac{5}{{19}}$

Solution

Number of elements in sample spa ce $=\mathrm{n}(\mathrm{s})$ 

$=3^{12}$

If $E$ corresponds to the event that one of the boxes contains exactly $3$ balls then $\mathrm{n}(\mathrm{E})=$

${\,^{12}}{{\rm{C}}_3} \times {\,^3}{{\rm{C}}_1} \times \left[ {{2^9} – 2{\rm{x}}{\,^9}{{\rm{C}}_3}} \right] + {\,^2}{{\rm{C}}_6} \times {\,^3}{{\rm{C}}_1} \times {\,^6}{{\rm{C}}_3}$

required probability $ = \frac{{{\rm{n}}({\rm{E}})}}{{{\rm{n}}({\rm{s}})}} = \frac{{\left( {428} \right){\,^{12}}{C_3}}}{{{3^{11}}}}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.