If ${a^2} + {b^2} + {c^2} + ab + bc + ca \leq 0\,\forall a,\,b,\,c\, \in \,R$ , then the value of determinant $\left| {\begin{array}{*{20}{c}}
{{{(a + b + c)}^2}}&{{a^2} + {b^2}}&1 \\
1&{{{(b + c + 2)}^2}}&{{b^2} + {c^2}} \\
{{c^2} + {a^2}}&1&{{{(c + a + 2)}^2}}
\end{array}} \right|$
$65$
$a^2+b^2+c^2+31$
$4(a^2+b^2+c^2)$
$0$
If $\left| {\,\begin{array}{*{20}{c}}a&b&{a + b}\\b&c&{b + c}\\{a + b}&{b + c}&0\end{array}\,} \right| = 0$; then $a,b,c$ are in
Let $A=\left(\begin{array}{ccc}{[x+1]} & {[x+2]} & {[x+3]} \\ {[x]} & {[x+3]} & {[x+3]} \\ {[x]} & {[x+2]} & {[x+4]}\end{array}\right),$ where $[t]$ denotes the greatest integer less than or equal to $\mathrm{t}$. If $\operatorname{det}(\mathrm{A})=192$, then the set of values of $\mathrm{x}$ is the interval
The sum of distinct values of $\lambda$ for which the system of equations
$(\lambda-1) x+(3 \lambda+1) y+2 \lambda z=0$
$(\lambda-1) x+(4 \lambda-2) y+(\lambda+3) z=0$
$2 x+(3 \lambda+1) y+3(\lambda-1) z=0$
has non-zero solutions, is
Consider the system of linear equations
$-x+y+2 z=0$
$3 x-a y+5 z=1$
$2 x-2 y-a z=7$
Let $S_{1}$ be the set of all $\mathrm{a} \in {R}$ for which the system is inconsistent and $S_{2}$ be the set of all $a \in {R}$ for which the system has infinitely many solutions. If $n\left(S_{1}\right)$ and $n\left(S_{2}\right)$ denote the number of elements in $S_{1}$ and $\mathrm{S}_{2}$ respectively, then
If $A = \left| {\,\begin{array}{*{20}{c}}{\sin (\theta + \alpha )}&{\cos (\theta + \alpha )}&1\\{\sin (\theta + \beta )}&{\cos (\theta + \beta )}&1\\{\sin (\theta + \gamma )}&{\cos (\theta + \gamma )}&1\end{array}\,} \right|$ ,then