If $a, b, c$ are three complex numbers such that $a^2 + b^2 + c^2 = 0$ and $\left| {\begin{array}{*{20}{c}}
{\left( {{b^2} + {c^2}} \right)}&{ab}&{ac}\\
{ab}&{\left( {{c^2} + {a^2}} \right)}&{bc}\\
{ac}&{bc}&{\left( {{a^2} + {b^2}} \right)}
\end{array}} \right| = K{a^2}{b^2}{c^2}$ then value of $K$ is
$1$
$2$
$-2$
$4$
If $\alpha , \beta \, and \, \gamma$ are real numbers , then $D = \left|{\begin{array}{*{20}{c}}1&{\cos \,(\beta \, - \,\alpha )}&{\cos \,(\gamma \, - \,\alpha )}\\{\cos \,(\alpha \, - \,\beta )}&1&{\cos \,(\gamma \, - \,\beta )}\\{\cos \,(\alpha \, - \,\gamma )}&{\cos \,(\beta \, - \,\gamma )}&1 \end{array}} \right|$ =
If the system of linear equations $x-2 y+z=-4 $ ; $2 x+\alpha y+3 z=5 $ ; $3 x-y+\beta z=3$ has infinitely many solutions, then $12 \alpha+13 \beta$ is equal to
Statement $-1$ : The system of linear equations
$x + \left( {\sin \,\alpha } \right)y + \left( {\cos \,\alpha } \right)z = 0$
$x + \left( {\cos \,\alpha } \right)y + \left( {\sin \alpha } \right)z = 0$
$x - \left( {\sin \,\alpha } \right)y - \left( {\cos \alpha } \right)z = 0$
has a non-trivial solution for only one value of $\alpha $ lying in the interval $\left( {0\,,\,\frac{\pi }{2}} \right)$
Statement $-2$ : The equation in $\alpha $
$\left| {\begin{array}{*{20}{c}}
{\cos {\mkern 1mu} \alpha }&{\sin {\mkern 1mu} \alpha }&{\cos {\mkern 1mu} \alpha } \\
{\sin {\mkern 1mu} \alpha }&{\cos {\mkern 1mu} \alpha }&{\sin {\mkern 1mu} \alpha } \\
{\cos {\mkern 1mu} \alpha }&{ - \sin {\mkern 1mu} \alpha }&{ - \cos {\mkern 1mu} \alpha }
\end{array}} \right| = 0$
has only one solution lying in the interval $\left( {0\,,\,\frac{\pi }{2}} \right)$
Let $\mathrm{A}(-1,1)$ and $\mathrm{B}(2,3)$ be two points and $\mathrm{P}$ be a variable point above the line $A B$ such that the area of $\triangle \mathrm{PAB}$ is $10$ . If the locus of $\mathrm{P}$ is $\mathrm{ax}+\mathrm{by}=15$, then $5 a+2 b$ is :
Let $M$ and $N$ be two $3 \times 3$ matrices such that $M N=N M$. Further, if $M \neq N^2$ and $M^2=N^4$, then
$(A)$ determinant of $\left( M ^2+ MN ^2\right)$ is $0$
$(B)$ there is a $3 \times 3$ non-zero matrix $U$ such that $\left( M ^2+ MN ^2\right) U$ is the zero matrix
$(C)$ determinant of $\left( M ^2+ MN ^2\right) \geq 1$
$(D)$ for a $3 \times 3$ matrix $U$, if $\left( M ^2+ MN ^2\right) U$ equals the zero matrix then $U$ is the zero matrix