The values of $\alpha$, for which $\left|\begin{array}{ccc}1 & \frac{3}{2} & \alpha+\frac{3}{2} \\ 1 & \frac{1}{3} & \alpha+\frac{1}{3} \\ 2 \alpha+3 & 3 \alpha+1 & 0\end{array}\right|=0$, lie in the interval

  • [JEE MAIN 2024]
  • A

     $(-2,1)$

  • B

     $(-3,0)$

  • C

     $\left(-\frac{3}{2}, \frac{3}{2}\right)$

  • D

     $(0,3)$

Similar Questions

If $\omega $ is a cube root of unity and $\Delta = \left| {\begin{array}{*{20}{c}}1&{2\omega }\\\omega &{{\omega ^2}}\end{array}} \right|$, then ${\Delta ^2}$ is equal to

If $a, b, c$ are sides of a scalene triangle, then the value of $\left| \begin{array}{*{20}{c}}
a&b&c\\
b&c&a\\
c&a&b
\end{array} \right|$ is

  • [JEE MAIN 2013]

Let $\mathrm{A}(-1,1)$ and $\mathrm{B}(2,3)$ be two points and $\mathrm{P}$ be a variable point above the line $A B$ such that the area of $\triangle \mathrm{PAB}$ is $10$ . If the locus of $\mathrm{P}$ is $\mathrm{ax}+\mathrm{by}=15$, then $5 a+2 b$ is :

  • [JEE MAIN 2024]

If the system of equations $x+y+z=6 \,; \,2 x+5 y+\alpha z=\beta  \,; \, x+2 y+3 z=14$ has infinitely many solutions, then $\alpha+\beta$ is equal to.

  • [JEE MAIN 2022]

Let $S_1$ and $S_2$ be respectively the sets of all $a \in R -\{0\}$ for which the system of linear equations

$a x+2 a y-3 a z=1$

$(2 a+1) x+(2 a+3) y+(a+1) z=2$

$(3 a+5) x+(a+5) y+(a+2) z=3$

has unique solution and infinitely many solutions. Then

  • [JEE MAIN 2023]