- Home
- Standard 11
- Mathematics
10-1.Circle and System of Circles
hard
If a circle $C$ passing through $(4, 0)$ touches the circle $x^2 + y^2 + 4x - 6y - 12 = 0$ externally at a point $(1, -1),$ then the radius of the circle $C$ is
A
$5$
B
$2\sqrt 5$
C
$4$
D
$\sqrt {57}$
(JEE MAIN-2013)
Solution

Let $A$ be the center og given circle and $B$ be the center of circle $C$.
${x^2} + {y^2} + 4x – 6y – 1 = 0$
$\therefore A = \left( { – 2,3} \right)$ and $B = \left( {g,f} \right)$
Now, from the figure, we have
$\frac{{ – 2 + g}}{2} = 1\,$ and $\frac{{3 + f}}{2} = – 1$
(By mid point formula)
$ \Rightarrow g = 4\,$ and $f = – 5$
Now, required radius
$ = OB = \sqrt {9 + 16} = \sqrt {25} = 5$
Standard 11
Mathematics