- Home
- Standard 11
- Mathematics
If a circle $C$ passing through $(4, 0)$ touches the circle $x^2 + y^2 + 4x - 6y - 12 = 0$ externally at a point $(1, -1),$ then the radius of the circle $C$ is
$5$
$2\sqrt 5$
$4$
$\sqrt {57}$
Solution

Let $A$ be the center og given circle and $B$ be the center of circle $C$.
${x^2} + {y^2} + 4x – 6y – 1 = 0$
$\therefore A = \left( { – 2,3} \right)$ and $B = \left( {g,f} \right)$
Now, from the figure, we have
$\frac{{ – 2 + g}}{2} = 1\,$ and $\frac{{3 + f}}{2} = – 1$
(By mid point formula)
$ \Rightarrow g = 4\,$ and $f = – 5$
Now, required radius
$ = OB = \sqrt {9 + 16} = \sqrt {25} = 5$
Similar Questions
Answer the following by appropriately matching the lists based on the information given in the paragraph
Let the circles $C_1: x^2+y^2=9$ and $C_2:(x-3)^2+(y-4)^2=16$, intersect at the points $X$ and $Y$. Suppose that another circle $C_3:(x-h)^2+(y-k)^2=r^2$ satisfies the following conditions :
$(i)$ centre of $C _3$ is collinear with the centres of $C _1$ and $C _2$
$(ii)$ $C _1$ and $C _2$ both lie inside $C _3$, and
$(iii)$ $C _3$ touches $C _1$ at $M$ and $C _2$ at $N$.
Let the line through $X$ and $Y$ intersect $C _3$ at $Z$ and $W$, and let a common tangent of $C _1$ and $C _3$ be a tangent to the parabola $x^2=8 \alpha y$.
There are some expression given in the $List-I$ whose values are given in $List-II$ below:
$List-I$ | $List-II$ |
$(I)$ $2 h + k$ | $(P)$ $6$ |
$(II)$ $\frac{\text { Length of } ZW }{\text { Length of } XY }$ | $(Q)$ $\sqrt{6}$ |
$(III)$ $\frac{\text { Area of triangle } MZN }{\text { Area of triangle ZMW }}$ | $(R)$ $\frac{5}{4}$ |
$(IV)$ $\alpha$ | $(S)$ $\frac{21}{5}$ |
$(T)$ $2 \sqrt{6}$ | |
$(U)$ $\frac{10}{3}$ |
($1$) Which of the following is the only INCORRECT combination?
$(1) (IV), (S)$ $(2) (IV), (U)$ $(3) (III), (R)$ $(4) (I), (P)$
($2$) Which of the following is the only CORRECT combination?
$(1) (II), (T)$ $(2) (I), (S)$ $(3) (I), (U)$ $(4) (II), (Q)$
Give the answer or quetion ($1$) and ($2$)