If a particle covers half the circle of radius R with constant speed then
Momentum change is $mvr$
Change in $K.E.$ is $1/2 mv^2$
Change in $K.E.$ is $mv^2$
Change in $K.E.$ is zero
A particle moves with constant angular velocity in circular path of certain radius and is acted upon by a certain centripetal force $F$. if the centripetal force $F$ is kept constant but the angular velocity is doubled, the new radius of the path (original radius $R$ ) will be
A string of length $L$ is fixed at one end and carries a mass $M$ at the other end. The string makes $2/\pi$ revolutions per second around the vertical axis through the fixed end as shown in the figure, then tension in the string is
A particle moves with constant angular velocity in a circle. During the motion its
$A \,10\, kg$ ball attached to the end of a rigid massless rod of length $1\, m$ rotates at constant speed in a horizontal circle of radius $0.5\, m$ and period $1.57 \, sec$ as in fig. The force exerted by rod on the ball is ........ $N$.
A particle is moving with constant speed in a circular path. When the particle turns by an angle $90^{\circ}$, the ratio of instantaneous velocity to its average velocity is $\pi: x \sqrt{2}$. The value of $x$ will be $.........$