Gujarati
4.Moving Charges and Magnetism
medium

If a particle of charge ${10^{ - 12}}\,coulomb$ moving along the $\hat x - $ direction with a velocity ${10^5}\,m/s$ experiences a force of ${10^{ - 10}}\,newton$ in $\hat y - $ direction due to magnetic field, then the minimum magnetic field is

A

$6.25 \times {10^3}\,tesla$ in $\hat z - $ direction

B

${10^{ - 15}}\,tesla$ in $\hat z - $ direction

C

$6.25 \times {10^{ - 3}}\,tesla$ in $\hat z - $ direction

D

${10^{ - 3}}\,tesla$ in $\hat z - $ direction

Solution

(d) $F = qvB\sin \theta $ $==>$ $B = \frac{F}{{qv\sin \theta }}$
${B_{\min }} = \frac{F}{{qv}}$(when $\theta$ = $90^o$)
$\therefore \;{B_{\min }} = \frac{F}{{qv}} = \frac{{{{10}^{ – 10}}}}{{{{10}^{ – 12}} \times {{10}^5}}} = {10^{ – 3}}$ $Tesla$ in $U = \frac{{{B^2}}}{{2{\mu _0}}},$  $\hat z – $ direction.

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.