An electron is projected with uniform velocity along the axis inside a current carrying long solenoid. Then :
the electron will be accelerated along the axis.
the electron will continue to move with uniform velocity along the axis of the solenoid.
the electron path will be circular about the axis.
the electron will experience a force at $45^{\circ}$ to the axis and execute a helical path.
Two charges of same magnitude move in two circles of radii $R_1=R$ and $R_2=2 R$ in a region of constant uniform magnetic field $B _0$. The work $W_1$ and $W_2$ done by the magnetic field in the two cases respectively, are such that
If an electron and a proton having same momenta enter perpendicular to a magnetic field, then
A magnetic field $\overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{j}}$ exists in the region $\mathrm{a} < \mathrm{x} < 2 \mathrm{a}$ and $\vec{B}=-B_0 \hat{j}$, in the region $2 \mathrm{a} < \mathrm{x} < 3 \mathrm{a}$, where $\mathrm{B}_0$ is a positive constant. $\mathrm{A}$ positive point charge moving with a velocity $\overrightarrow{\mathrm{v}}=\mathrm{v}_0 \hat{\dot{i}}$, where $v_0$ is a positive constant, enters the magnetic field at $x=a$. The trajectory of the charge in this region can be like,
A deuteron and an alpha particle having equal kinetic energy enter perpendicular into a magnetic field. Let $r_{d}$ and $r_{\alpha}$ be their respective radii of circular path. The value of $\frac{r_{d}}{r_{\alpha}}$ is equal to
If the direction of the initial velocity of the charged particle is neither along nor perpendicular to that of the magnetic field, then the orbit will be