$1\,kg$ द्रव्यमान एवं $R$ त्रिज्या का एक गोलीय कोश कोणीय चाल $\omega$ से एक क्षैतिज तल पर चित्रानुसार लोटनी गति कर रहा है। कोश के कोणीय संवेग का मूल बिन्दु $O$ के सापेक्ष परिमाण $\frac{ a }{3} R ^2 \omega$ है तो $a$ का मान होगा।
दो कण जिनमें से प्रत्येक का द्रव्यमान $m$ एवं चाल $v$ है $d$ दूरी पर, समान्तर रेखाओं के अनुदिश, विपरीत दिशाओं में चल रहे हैं। दर्शाइये कि इस द्विकण निकाय का सदिश कोणीय संवेग समान रहता है, चाहे हम जिस बिन्दु के परित: कोणीय संवेग लें।
कोणीय संवेग $L$ तथा कोणीय वेग $ \omega $ के बीच का ग्राफ होगा
नीचे दी गयी सूची-$I$ में, एक कण के चार विभिन्न पथ, समय के विभिन्न फलनों (functions) के रूप में दिये गये हैं। इन फलनों में $\alpha$ और $\beta$ उचित विमाओं वाले धनात्मक नियतांक (positive constants) हैं, जहाँ $\alpha \neq \beta$ | प्रत्येक पथ में कण पर लगने वाला बल या तो शून्य है या संरक्षी (conservative) है। सूची॥ में कण की पाँच भौतिक राशियों का विवरण दिया गया है: $\vec{p}$ रेखीय संवेग (linear momentum) है, $\vec{L}$ मूल बिंदु (origin) के सापेक्ष कोणीय संवेग (angular momentum) है, $K$ गतिज उर्जा (kinetic energy) है, $U$ स्थितिज उर्जा (potential energy) है और $E$ कुल उर्जा (total energy) है। सूची-$I$ के प्रत्येक पथ का सूची-$II$ में दिये गये उन राशियों से सुमेल कीजिये, जो उस पथ के लिए संरक्षी (conserved) हैं।
सूची-$I$ | सूची-$II$ |
$P$ $\dot{r}(t)=\alpha t \hat{t}+\beta t \hat{j}$ | $1$ $\overrightarrow{ p }$ |
$Q$ $\dot{r}(t)=\alpha \cos \omega t \hat{i}+\beta \sin \omega t \hat{j}$ | $2$ $\overrightarrow{ L }$ |
$R$ $\dot{r}(t)=\alpha(\cos \omega t \hat{i}+\sin \omega t \hat{j})$ | $3$ $K$ |
$S$ $\dot{r}(t)=\alpha t \hat{i}+\frac{\beta}{2} t^2 \hat{j}$ | $4$ $U$ |
$5$ $E$ |
$m$ द्रव्यमान का एक कण, $XY$ तल में सीधी रेखा $AB$ पर $v$ वेग से गतिशील है। मूल बिन्दु $O$ के सापेक्ष कण का कोणीय संवेग बिन्दु $A$ पर $L _{ A }$ हो तथा बिन्दु $B$ पर $L _{ B }$ हो, तो