$500 \mathrm{~g}$ द्रव्यमान एवं $5 \mathrm{~cm}$ त्रिज्या वाले एक ठोस गोले को इसके एक व्यास के परितः $10 \mathrm{rad} \mathrm{s}^{-1}$ की कोणीय चाल से घुमाया जाता है। यदि गोले का अपनी स्पर्शरेखा के सापेक्ष जड़त्वाघूर्ण, व्यास के सापेक्ष इसके कोणीय संवेग का $\mathrm{x} \times 10^{-2}$ गुना है। तो $\mathrm{x}$ का मान_____________होगा।

  • [JEE MAIN 2023]
  • A

    $34$

  • B

    $35$

  • C

    $36$

  • D

    $38$

Similar Questions

चित्र में भुजा $'a'$ का वर्ग $x-y$ तल में हैं। $m$ द्रव्यमान का एक कण एकसमान गति, $v$ से इस वर्ग की भुजा पर चल रहा है जैसा कि चित्र में दर्शाया गया हैं।

निम्न में से कौन-सा कथन, इस कण के मूलबिंदु के गिर्द कोणीय आघूर्ण $\vec{L}$ के लिये, गलत है?

  • [JEE MAIN 2016]

किसी कण की स्थिति $\mathop r\limits^ \to = (\hat i + 2\hat j - \hat k)$ तथा संवेग $\mathop P\limits^ \to = (3\hat i + 4\hat j - 2\hat k)$ है, तो कोणीय संवेग निम्न के लम्बवत् होगा

यदि पृथ्वी को $R$ त्रिज्या तथा $M$ द्रव्यमान का एक गोला माना जाए, तो इसकी घूर्णन अक्ष के परित: समयांतराल $T$ के पदों में कोणीय संवेग का मान होगा

द्रव्यमान $M$ व त्रिज्या $R$ की एक चकती क्षैतिज तल पर कोणीय चाल $ \omega $ से लुढ़क रही है। चकती के कोणीय संवेग का मान मूल बिन्दुु $O$ के परित: होगा

  • [IIT 1999]

नीचे दी गयी सूची-$I$ में, एक कण के चार विभिन्न पथ, समय के विभिन्न फलनों (functions) के रूप में दिये गये हैं। इन फलनों में $\alpha$ और $\beta$ उचित विमाओं वाले धनात्मक नियतांक (positive constants) हैं, जहाँ $\alpha \neq \beta$ | प्रत्येक पथ में कण पर लगने वाला बल या तो शून्य है या संरक्षी (conservative) है। सूची॥ में कण की पाँच भौतिक राशियों का विवरण दिया गया है: $\vec{p}$ रेखीय संवेग (linear momentum) है, $\vec{L}$ मूल बिंदु (origin) के सापेक्ष कोणीय संवेग (angular momentum) है, $K$ गतिज उर्जा (kinetic energy) है, $U$ स्थितिज उर्जा (potential energy) है और $E$ कुल उर्जा (total energy) है। सूची-$I$ के प्रत्येक पथ का सूची-$II$ में दिये गये उन राशियों से सुमेल कीजिये, जो उस पथ के लिए संरक्षी (conserved) हैं।

सूची-$I$ सूची-$II$
$P$ $\dot{r}(t)=\alpha t \hat{t}+\beta t \hat{j}$ $1$ $\overrightarrow{ p }$
$Q$ $\dot{r}(t)=\alpha \cos \omega t \hat{i}+\beta \sin \omega t \hat{j}$ $2$ $\overrightarrow{ L }$
$R$ $\dot{r}(t)=\alpha(\cos \omega t \hat{i}+\sin \omega t \hat{j})$ $3$ $K$
$S$ $\dot{r}(t)=\alpha t \hat{i}+\frac{\beta}{2} t^2 \hat{j}$ $4$ $U$
  $5$ $E$

  • [IIT 2018]