If a spring of stiffness $k$ is cut into two parts $A$ and $B$ of length $l_{A}: l_{B}=2: 3$, then the stiffness of spring $A$ is given by
$\frac{5}{2} k$
$\frac{3}{5} k$
$\frac{2}{5} k$
$k$
A mass $m$ is attached to two springs of same force constant $K$, as shown in following four arrangements. If $T_1, T_2, T_3$ and $T_4$ respectively be the time periods of oscillation in the following arrangements, in which case time period is maximum?
A mass $m$ is vertically suspended from a spring of negligible mass; the system oscillates with a frequency $n$. What will be the frequency of the system if a mass $4 m$ is suspended from the same spring
Three masses $700g, 500g$, and $400g$ are suspended at the end of a spring a shown and are in equilibrium. When the $700g$ mass is removed, the system oscillates with a period of $3$ seconds, when the $500 \,gm$ mass is also removed, it will oscillate with a period of ...... $s$
What provides the restoring force in the following cases ?
$(1)$ Compressed spring becomes force for oscillation.
$(2)$ Displacement of water in $U\,-$ tube,
$(3)$ Displacement of pendulum bob from mean position.
Find the time period of mass $M$ when displaced from its equilibrium position and then released for the system shown in figure.