If a system of the equation ${(\alpha + 1)^3}x + {(\alpha + 2)^3}y - {(\alpha + 3)^3} = 0$ and $(\alpha + 1)x + (\alpha + 2)y - (\alpha + 3) = 0,x + y - 1 = 0$ is constant. what is the value of $\alpha $
$1$
$0$
$-3$
$-2$
Let $\alpha $ and $\beta $ be the roots of the equation $x^2 + x + 1 = 0.$ Then for $y \ne 0$ in $R,$ $\left| {\begin{array}{*{20}{c}}
{y\, + \,1}&\alpha &\beta \\
\alpha &{y\, + \,\beta }&1\\
\beta &1&{y\, + \,\alpha }
\end{array}} \right|$ is equal to
Let $\theta \in\left(0, \frac{\pi}{2}\right)$. If the system of linear equations
$\left(1+\cos ^{2} \theta\right) x+\sin ^{2} \theta y+4 \sin 3 \theta z=0$
$\cos ^{2} \theta x+\left(1+\sin ^{2} \theta\right) y+4 \sin 3 \theta z=0$
$\cos ^{2} \theta x+\sin ^{2} \theta y+(1+4 \sin 3 \theta) z=0$
has a non-trivial solution, then the value of $\theta$ is :
The number of solutions of the equations $x + 4y - z = 0,$ $3x - 4y - z = 0,\,x - 3y + z = 0$ is
The value of $\left| {\begin{array}{*{20}{c}}
1&x&y\\
2&{\sin x + 2x}&{\sin y + 2y}\\
3&{\cos x + 3x}&{\cos y + 3y}
\end{array}} \right|$ is
The system of equations ${x_1} - {x_2} + {x_3} = 2,$ $\,3{x_1} - {x_2} + 2{x_3} = - 6$ and $3{x_1} + {x_2} + {x_3} = - 18$ has