$\alpha $ के किस मान के लिए समीकरण निकाय ${(\alpha  + 1)^3}x + {(\alpha  + 2)^3}y - {(\alpha  + 3)^3} = 0$, $(\alpha  + 1)x + (\alpha  + 2)y - (\alpha  + 3) = 0,$ $x + y - 1 = 0$ संगत है

  • A

    $1$

  • B

    $0$

  • C

    $-3$

  • D

    $-2$

Similar Questions

माना समीकरण निकाय

$x+y+\alpha z=2$

$3 x+y+z=4$

$x+2 z=1$

का अद्वितीय हल $\left( x ^*, y ^*, z ^*\right)$ है यदि $\left(\alpha, x ^*\right)$, $\left( y ^*, \alpha\right)$ तथा $\left( x ^*,- y ^*\right)$ संरेखीय बिन्दु हो, तो $\alpha$ की सभी संभव मानों का निरपेक्ष मान होगा :

  • [JEE MAIN 2022]

यदि वास्तविक संख्याओं $\alpha$ तथा $\beta$ के लिए रैखिक समीकरण निकाय : $x + y - z =2, x +2 y +\alpha z =1,2 x - y + z =\beta$ के अनंत हल हैं, तो $\alpha+\beta$ बराबर है ।

  • [JEE MAIN 2021]

$k$  के किस मान के लिये समीकरण निकाय $x + ky - z = 0,3x - ky - z = 0$ व $x - 3y + z = 0$ का एक अशून्य हल होगा

  • [IIT 1988]

यदि $\omega $ इकाई  का घनमूल हो व $\Delta  = \left| {\begin{array}{*{20}{c}}1&{2\omega }\\\omega &{{\omega ^2}}\end{array}} \right|$, तो ${\Delta ^2}$ =

यदि $a \ne b \ne c,$ तो  $x$  का वह मान, जो समीकरण $\left| {\,\begin{array}{*{20}{c}}0&{x - a}&{x - b}\\{x + a}&0&{x - c}\\{x + b}&{x + c}&0\end{array}\,} \right| = 0$ को संतुष्ट करता है, है