Let $\mathrm{A}=\left[\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right],$ where $0 \leq \theta \leq 2 \pi$. Then

  • A

    $\operatorname{Det}(\mathrm{A})=0$

  • B

    $\operatorname{Det}(\mathrm{A}) \in[2,4]$

  • C

    $Det$ $(\mathrm{A}) \in(2, \infty)$

  • D

    $\operatorname{Det}(\mathrm{A}) \in(2,4)$

Similar Questions

If the system of equations

$ 2 x+7 y+\lambda z=3 $

$ 3 x+2 y+5 z=4 $

$ x+\mu y+32 z=-1$

has infinitely many solutions, then $(\lambda-\mu)$ is equal to $\qquad$

  • [JEE MAIN 2024]

Let $A = \left[ {\begin{array}{*{20}{c}}
  2&b&1 \\ 
  b&{{b^2} + 1}&b \\ 
  1&b&2 
\end{array}} \right]$  where $b > 0$. Then the minimum value of $\frac{{\det \left( A \right)}}{b}$ is

  • [JEE MAIN 2019]

The system of linear equations $x + \lambda y - z = 0,\lambda x - y - z = 0\;,\;x + y - \lambda z = 0$ has a non-trivial solution for:

  • [JEE MAIN 2016]

$S$ denote the set of all real values of $\lambda$ such that the system of equations  $\lambda x + y + z =1$ ; $x +\lambda y + z =1$ ; $x + y +\lambda z =1$ is inconsistent, then $\sum_{\lambda \in S}\left(|\lambda|^2+|\lambda|\right)$ is equal to

  • [JEE MAIN 2023]

Let $S$ be the set of all $\lambda \in \mathrm{R}$ for which the system of linear equations

$2 x-y+2 z=2$

$x-2 y+\lambda z=-4$

$x+\lambda y+z=4$

has no solution. Then the set $S$

  • [JEE MAIN 2020]