Let $\mathrm{A}=\left[\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right],$ where $0 \leq \theta \leq 2 \pi$. Then
$\operatorname{Det}(\mathrm{A})=0$
$\operatorname{Det}(\mathrm{A}) \in[2,4]$
$Det$ $(\mathrm{A}) \in(2, \infty)$
$\operatorname{Det}(\mathrm{A}) \in(2,4)$
If the system of equations
$x+y+z=2$
$2 x+4 y-z=6$
$3 x+2 y+\lambda z=\mu$ has infinitely many solutions, then
The value of $\left| {\,\begin{array}{*{20}{c}}{41}&{42}&{43}\\{44}&{45}&{46}\\{47}&{48}&{49}\end{array}\,} \right| = $
If $a, b, c$ are sides of a scalene triangle, then the value of $\left| \begin{array}{*{20}{c}}
a&b&c\\
b&c&a\\
c&a&b
\end{array} \right|$ is
Evaluate the determinants
$\left|\begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right|$
If $p + q + r = 0 = a + b + c$, then the value of the determinant $\left| {\,\begin{array}{*{20}{c}}{pa}&{qb}&{rc}\\{qc}&{ra}&{pb}\\{rb}&{pc}&{qa}\end{array}\,} \right|$ is