If an electron enters a magnetic field with its velocity pointing in the same direction as the magnetic field, then
The electron will turn to its right
The electron will turn to its left
The velocity of the electron will increase
The velocity of the electron will remain unchanged
Electrons moving with different speeds enter a uniform magnetic field in a direction perpendicular to the field. They will move along circular paths.
A charged particle carrying charge $1\,\mu C$ is moving with velocity $(2 \hat{ i }+3 \hat{ j }+4 \hat{ k })\, ms ^{-1} .$ If an external magnetic field of $(5 \hat{ i }+3 \hat{ j }-6 \hat{ k }) \times 10^{-3}\, T$ exists in the region where the particle is moving then the force on the particle is $\overline{ F } \times 10^{-9} N$. The vector $\overrightarrow{ F }$ is :
A car of mass $1000\,kg$ negotiates a banked curve of radius $90\,m$ on a fictionless road. If the banking angle is $45^o$, the speed of the car is ......... $ms^{-1}$
Show that a force that does no work must be a velocity dependent force.
An electron accelerated through a potential difference $V$ enters a uniform transverse magnetic field and experiences a force $F$. If the accelerating potential is increased to $2V$, the electron in the same magnetic field will experience a force