Which particles will have minimum frequency of revolution when projected with the same velocity perpendicular to a magnetic field
$Li^+$
Electron
Proton
$H{e^ + }$
Proton with kinetic energy of $1\;MeV$ moves from south to north. It gets an acceleration of $10^{12}\; \mathrm{m} / \mathrm{s}^{2}$ by an applied magnetic field (west to east). The value of magnetic field :.......$mT$ (Rest mass of proton is $1.6 \times 10^{-27} \;\mathrm{kg}$ )
Maximum kinetic energy of the positive ion in the cyclotron is
A charge having $q/m$ equal to $10^8\, C/kg$ and with velocity $3 \times 10^5\, m/s$ enters into a uniform magnetic field $0.3\, tesla$ at an angle $30^o$ with direction of field. The radius of curvature will be ......$cm$
A charged particle of charge $q$ and mass $m$, gets deflected through an angle $\theta$ upon passing through a square region of side $a$, which contains a uniform magnetic field $B$ normal to its plane. Assuming that the particle entered the square at right angles to one side, what is the speed of the particle?
An electron is moving along positive $x$-axis.Auniform electric field exists towards negative $y$-axis. What should be the direction of magnetic field of suitable magnitude so that net force of electron is zero