If area of quadrilateral formed by tangents drawn at ends of latus rectum of hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is equal to square of distance between centre and one focus of hyperbola, then $e^3$ is ($e$ is eccentricity of hyperbola)
$2\sqrt 2$
$2$
$3$
$8$
A line parallel to the straight line $2 x-y=0$ is tangent to the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{2}=1$ at the point $\left(x_{1}, y_{1}\right) .$ Then $x_{1}^{2}+5 y_{1}^{2}$ is equal to
The foci of the hyperbola $9{x^2} - 16{y^2} = 144$ are
For the Hyperbola ${x^2}{\sec ^2}\theta - {y^2}cose{c^2}\theta = 1$ which of the following remains constant when $\theta $ varies $= ?$
The equation of the hyperbola in the standard form (with transverse axis along the $x$ - axis) having the length of the latus rectum = $9$ units and eccentricity = $5/4$ is
The vertices of a hyperbola $H$ are $(\pm 6,0)$ and its eccentricity is $\frac{\sqrt{5}}{2}$. Let $N$ be the normal to $H$ at a point in the first quadrant and parallel to the line $\sqrt{2} x + y =2 \sqrt{2}$. If $d$ is the length of the line segment of $N$ between $H$ and the $y$-axis then $d ^2$ is equal to $............$.