A tangent to a hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ intercepts a length of unity from each of the co-ordinate axes, then the point $(a, b)$ lies on the rectangular hyperbola

  • A

    ${x^2} - {y^2} = 2$

  • B

    ${x^2} - {y^2} = 1$

  • C

    ${x^2} - {y^2} = - 1$

  • D

    None of these

Similar Questions

The magnitude of the gradient of the tangent at an extremity of latera recta of the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ is equal to (where $e$ is the eccentricity of the hyperbola)

The value of $m$, for which the line $y = mx + \frac{{25\sqrt 3 }}{3}$, is a normal to the conic $\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1$, is

Let $H _{ n }=\frac{ x ^2}{1+ n }-\frac{ y ^2}{3+ n }=1, n \in N$. Let $k$ be the smallest even value of $n$ such that the eccentricity of $H _{ k }$ is a rational number. If $l$ is length of the latus return of $H _{ k }$, then $21 l$ is equal to $.......$.

  • [JEE MAIN 2023]

If a directrix of a hyperbola centered at the origin and passing through the point $(4, -2\sqrt 3)$ is $5x = 4\sqrt 5$ and its eccentricity is $e$, then

  • [JEE MAIN 2019]

The locus of middle points of the chords of the circle $x^2 + y^2 = a^2$ which touch the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ is