10-2. Parabola, Ellipse, Hyperbola
medium

Find the equation of the hyperbola satisfying the give conditions: Foci $(\pm 5,\,0),$ the transverse axis is of length $8$

A

$\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$

B

$\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$

C

$\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$

D

$\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$

Solution

Foci $(\pm 5,\,0),$ the transverse axis is of length $8$.

Here, the foci are on the $x-$ axis.

Therefore, the equation of the hyperbola is of the form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

since the foci are $(\pm 5,\,0)$,  $c=5$

since the length of the transverse axis is $8,2 a=8 \Rightarrow a=4$

We know that  $a^{2}+b^{2}=c^{2}$

$\therefore 4^{2}+b^{2}=52$

$\Rightarrow b^{2}=25-16=9$

Thus, the equation of the hyperbola is $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.