If atmospheric electric field is approximately $150 \,volt / m$ and radius of the earth is $6400 \,km$, then the total charge on the earth's surface is .......... coulomb
$6.8 \times 10^5$
$6.8 \times 10^6$
$6.8 \times 10^4$
$6.8 \times 10^9$
Find out the surface charge density at the intersection of point $x =3\, m$ plane and $x$ -axis, in the region of uniform line charge of $8\, nC / m$ lying along the $z$ -axis in free space.
A cubical volume is bounded by the surfaces $x =0, x = a , y =0, y = a , z =0, z = a$. The electric field in the region is given by $\overrightarrow{ E }= E _0 \times \hat{ i }$. Where $E _0=4 \times 10^4 NC ^{-1} m ^{-1}$. If $a =2 cm$, the charge contained in the cubical volume is $Q \times 10^{-14} C$. The value of $Q$ is $...........$
Take $\left.\varepsilon_0=9 \times 10^{-12} C ^2 / Nm ^2\right)$
A point charge $+10\; \mu \,C$ is a distance $5 cm$ directly above the centre of a square of side $10 \;cm ,$ as shown in Figure. What is the magnitude of the electric flux through the square?
Assertion : Four point charges $q_1,$ $q_2$, $q_3$ and $q_4$ are as shown in figure. The flux over the shown Gaussian surface depends only on charges $q_1$ and $q_2$.
Reason : Electric field at all points on Gaussian surface depends only on charges $q_1$ and $q_2$ .
A field line shown in the figure. This field line cannot represent