एक समान समतल विद्युत चुम्बकीय तरंग की विद्युत क्षेत्र तीव्रता $E =-301.6 \sin ( kz -\omega t ) \hat{ a }_{ x }+$ $452.4 \sin ( kz -\omega t ) \hat{ a }_{ y } \frac{ V }{ m }$ है, तो इसी तरंग की चुम्बकीय तीव्रता $H$ का मान $Am ^{-1}$ होगा: [c $=3 \times 10^8 ms ^{-1}$, निर्वात में प्रकाश की चाल एवं निर्वात की पारगम्यता $\left.\mu_0=4 \pi \times 10^{-7} NA ^{-2}\right]$
$+0.8 \sin ( kz -\omega t ) \hat{ a }_{ y }+0.8 \sin ( kz -\omega t ) \hat{ a }_{ x }$
$+1.0 \times 10^{-6} \sin ( kz -\omega t ) \hat{ a }_{ y }+1.5 \times 10^{-6}( kz -\omega t ) \hat{ a }_{ x }$
$-0.8 \sin ( kz -\omega t ) \hat{ a }_{ y }-1.2 \sin ( kz -\omega t ) \hat{ a }_{ x }$
$-1.0 \times 10^{-6} \sin ( kz -\omega t ) \hat{ a }_{ y }-1.5 \times 10^{-6} \sin ( kz -\omega t ) \hat{ a }_{ x }$
किसी विद्युत चुम्बकीय तरंग में विधुत क्षेत्र निम्नवत है
$\overrightarrow{\mathrm{E}}=20 \sin \omega\left(\mathrm{t}-\frac{\mathrm{x}}{\mathrm{c}}\right) \overrightarrow{\mathrm{j} N C^{-1}}$
जहाँ $\omega$ एवं $\mathrm{c}$ क्रमशः कोणीय आवृत्ति एवं विद्युत चुम्बकीय तरंग का वेग हैं। $5 \times 10^{-4} \mathrm{~m}^3$ के आयतन में अंतर्विष्ट (Contained) ऊर्जा होगी:
(दिया है $\varepsilon_0=8.85 \times 10^{-12} \mathrm{C}^2 / \mathrm{Nm}^2$ )
मुक्त आकाश में किसी बिन्दु पर सूर्य के प्रकाश की तीव्रता $0.092\, Wm ^{-2}$ है। इस बिन्दु पर चुम्बकीय क्षेत्र का शिखर मान होगा। $\left(\varepsilon_{0}=8.85 \times 10^{-12} \,C ^{2} \,N ^{-1}\, m ^{-2}\right)$
एक विद्युत चुम्बकीय तरंग में विद्युत एवं चुम्बकीय क्षेत्र के मान क्रमश: $100\,V\,{m^{ - 1}}$ एवं $0.265\,A\,{m^{ - 1}}$ है। अधिकतम ऊर्जा प्रवाह ....$W/{m^2}$ है
समय $t =0$ पर मुक्ताकाश में किसी समतल ध्रुवित विधुत चुम्बकीय तरंग का विधुत क्षेत्र निम्न व्यंजक द्वारा दिया जाता है :-
$\overrightarrow{ E }( x , y )=10 \hat{ j } \cos [(6 x +8 z )]$ चुम्बकीय क्षेत्र $\overrightarrow{ B }( x , z , t )$ है : ( $c$ प्रकाश का वेग है)
यदि $\overrightarrow E $ एवं $\overrightarrow B $ क्रमश: विद्युत चुम्बकीय तरंग के विद्युत क्षेत्र सदिश एवं चुम्बकीय क्षेत्र सदिश को व्यक्त करते हैं तो विद्युत चुम्बकीय तरंग संचरण की दिशा निम्न में से किसकी दिशा में होगी