- Home
- Standard 11
- Mathematics
If for some $\mathrm{m}, \mathrm{n} ;{ }^6 \mathrm{C}_{\mathrm{m}}+2\left({ }^6 \mathrm{C}_{\mathrm{m}+1}\right)+{ }^6 \mathrm{C}_{\mathrm{m}+2}>{ }^8 \mathrm{C}_3$ and ${ }^{n-1} P_3:{ }^n P_4=1: 8$, then ${ }^n P_{m+1}+{ }^{n+1} C_m$ is equal to
$380$
$376$
$384$
$372$
Solution
${ }^6 \mathrm{C}_{\mathrm{m}}+2\left({ }^6 \mathrm{C}_{\mathrm{m}+1}\right)+{ }^6 \mathrm{C}_{\mathrm{m}+2}>{ }^8 \mathrm{C}_3$
${ }^7 \mathrm{C}_{\mathrm{m}+1}+{ }^7 \mathrm{C}_{\mathrm{m}+2}>{ }^8 \mathrm{C}_3$
${ }^8 \mathrm{C}_{\mathrm{m}+2}>{ }^8 \mathrm{C}_3$
$\therefore \mathrm{m}=2$
$\text { And }{ }^{\mathrm{n}-1} \mathrm{P}_3:{ }^{\mathrm{n} P_4=1: 8}$
$\frac{(n-1)(n-2)(n-3)}{n(n-1)(n-2)(n-3)}=\frac{1}{8}$
$\therefore \mathrm{n}=8$
$\therefore{ }^{\mathrm{n}} \mathrm{P}_{\mathrm{m}+1}+{ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{m}}={ }^8 \mathrm{P}_3+{ }^9 \mathrm{C}_2$
$=8 \times 7 \times 6+\frac{9 \times 8}{2}$
$=372$