If for some positive integer $n,$ the coefficients of three consecutive terms in the binomial expansion of $(1+x)^{n+5}$ are in the ratio $5: 10: 14,$ then the largest coefficient in this expansion is

  • [JEE MAIN 2020]
  • A

    $792$

  • B

    $252$

  • C

    $462$

  • D

    $330$

Similar Questions

The coefficient of middle term in the expansion of ${(1 + x)^{10}}$ is

The coefficient of ${x^{ - 7}}$ in the expansion of ${\left( {ax - \frac{1}{{b{x^2}}}} \right)^{11}}$ will be

  • [IIT 1967]

If the coefficient of $x ^{15}$ in the expansion of $\left(a x^3+\frac{1}{b x^{\frac{1}{3}}}\right)^{15}$ is equal to the coefficient of $x^{-15}$ in the expansion of $\left(a x^{\frac{1}{3}}-\frac{1}{b x^3}\right)^{15}$, where $a$ and $b$ are positive real numbers, then for each such ordered pair $(a, b) :$

  • [JEE MAIN 2023]

Let ${\left( {x + 10} \right)^{50}} + {\left( {x - 10} \right)^{50}} = {a_0} + {a_1}x + {a_2}{x^2} + .... + {a_{50}}{x^{50}}$ , for $x \in R$; then $\frac{{{a_2}}}{{{a_0}}}$ is equal to

  • [JEE MAIN 2019]

The coefficient of ${x^5}$ in the expansion of ${(1 + x)^{21}} + {(1 + x)^{22}} + .......... + {(1 + x)^{30}}$ is