माना किसी धनपूर्णाक $n$ के लिए, $(1+ x )^{ n +5}$ के द्विपद प्रसार में तीन क्रमागत पदों के गुणांक $5: 10: 14$ के अनुपात में हैं, तो इस प्रसार में सब से बड़ा गुणांक है
$792$
$252$
$462$
$330$
${\left( {{x^4} - \frac{1}{{{x^3}}}} \right)^{15}}$ के विस्तार में ${x^{39}}$ का गुणांक होगा
यदि ${(1 + x)^{2n}}$ के विस्तार में दूसरा, तीसरा तथा चौथा पद समान्तर श्रेणी में हैं, तो $2{n^2} - 9n + 7$ का मान होगा
${({x^2} - x - 2)^5}$ के विस्तार में ${x^5}$ का गुणांक होगा
यदि $\left(\frac{ x }{4}-\frac{12}{ x ^{2}}\right)^{12}$ के द्विपद प्रसार में $x$ से स्वतंत्र पद $\left(\frac{3^{6}}{4^{4}}\right) k$ हो, तो $k$ बराबर होगा .........
${\left( {x - \frac{1}{x}} \right)^{18}}$ के प्रसार में मध्य पद है