7.Binomial Theorem
hard

જો કોઈ ધન પૂર્ણાક સંખ્યા $n$ માટે $(1+x)^{n+5}$ ના વિસ્તરણમાં $x$ ની ઘાતમાં વધારો થાય અને આ વિસ્તરણમા ત્રણ ક્રમિક પદોના સહગુણકોનો ગુણોત્તર $5: 10: 14$ હોય તો આ વિસ્તરણમાં સૌથી મોટો સહગુણક મેળવો 

A

$792$

B

$252$

C

$462$

D

$330$

(JEE MAIN-2020)

Solution

Let $n+5=N$

$N _{ C _{ r -1}}: N _{ C _{ r }}: N _{ C _{ r +1}}=5: 10: 14$

$\Rightarrow \frac{ N _{ C _{r}}}{ N _{ C _{ r -1}}}=\frac{ N +1- r }{ r }=2$

$\frac{N_{C_{r+1}}}{N_{C_{r}}}=\frac{N-r}{r+1}=\frac{7}{5}$

$\Rightarrow \quad r=4, N=11$

$\Rightarrow \quad(1+x)^{11}$

Largest coefficient $={ }^{11} C _{6}=462$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.