- Home
- Standard 11
- Mathematics
7.Binomial Theorem
hard
જો કોઈ ધન પૂર્ણાક સંખ્યા $n$ માટે $(1+x)^{n+5}$ ના વિસ્તરણમાં $x$ ની ઘાતમાં વધારો થાય અને આ વિસ્તરણમા ત્રણ ક્રમિક પદોના સહગુણકોનો ગુણોત્તર $5: 10: 14$ હોય તો આ વિસ્તરણમાં સૌથી મોટો સહગુણક મેળવો
A
$792$
B
$252$
C
$462$
D
$330$
(JEE MAIN-2020)
Solution
Let $n+5=N$
$N _{ C _{ r -1}}: N _{ C _{ r }}: N _{ C _{ r +1}}=5: 10: 14$
$\Rightarrow \frac{ N _{ C _{r}}}{ N _{ C _{ r -1}}}=\frac{ N +1- r }{ r }=2$
$\frac{N_{C_{r+1}}}{N_{C_{r}}}=\frac{N-r}{r+1}=\frac{7}{5}$
$\Rightarrow \quad r=4, N=11$
$\Rightarrow \quad(1+x)^{11}$
Largest coefficient $={ }^{11} C _{6}=462$
Standard 11
Mathematics