For any two vectors $\overrightarrow A $ and $\overrightarrow B $, if $\overrightarrow A \,.\,\overrightarrow B = \,\,|\overrightarrow A \times \overrightarrow B |,$ the magnitude of $\overrightarrow C = \overrightarrow A + \overrightarrow B $ is equal to
$\sqrt {{A^2} + {B^2}} $
$A + B$
$\sqrt {{A^2} + {B^2} + \frac{{AB}}{{\sqrt 2 }}} $
$\sqrt {{A^2} + {B^2} + \sqrt 2 \times AB} $
If $\overrightarrow P .\overrightarrow Q = PQ,$ then angle between $\overrightarrow P $and $\overrightarrow Q $ is ....... $^o$
The two vectors $\vec A$ and $\vec B$ that are parallel to each other are
If $\overrightarrow {\rm A} = 2\hat i + 3\hat j - \hat k$ and $\overrightarrow B = - \hat i + 3\hat j + 4\hat k$ then projection of $\overrightarrow A $ on $\overrightarrow B $ will be
The angle between $(\overrightarrow A - \overrightarrow B )$ and $(\overrightarrow A \times \overrightarrow B )$ is $(\overrightarrow{ A } \neq \overrightarrow{ B })$