If line $ax + by = 0$ touches ${x^2} + {y^2} + 2x + 4y = 0$ and is a normal to the circle ${x^2} + {y^2} - 4x + 2y - 3 = 0$, then value of $(a,b)$ will be
$(2, 1)$
$(1, -2)$
$(1, 2)$
$(-1, 2)$
The equations of the tangents to the circle ${x^2} + {y^2} = 36$ which are inclined at an angle of ${45^o}$ to the $x$-axis are
The line $ax + by + c = 0$ is a normal to the circle ${x^2} + {y^2} = {r^2}$. The portion of the line $ax + by + c = 0$ intercepted by this circle is of length
A circle is drawn with $y- $ axis as a tangent and its centre at the point which is the reflection of $(3, 4)$ in the line $y = x$. The equation of the circle is
If a line, $y=m x+c$ is a tangent to the circle, $(x-3)^{2}+y^{2}=1$ and it is perpendicular to a line $\mathrm{L}_{1},$ where $\mathrm{L}_{1}$ is the tangent to the circle, $\mathrm{x}^{2}+\mathrm{y}^{2}=1$ at the point $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),$ then
Let the tangents at the points $A (4,-11)$ and $B (8,-5)$ on the circle $x^2+y^2-3 x+10 y-15=0$, intersect at the point $C$. Then the radius of the circle, whose centre is $C$ and the line joining $A$ and $B$ is its tangent, is equal to