Gujarati
10-1.Circle and System of Circles
easy

The equation of the tangent at the point $\left( {\frac{{a{b^2}}}{{{a^2} + {b^2}}},\frac{{{a^2}b}}{{{a^2} + {b^2}}}} \right)$ of the circle ${x^2} + {y^2} = \frac{{{a^2}{b^2}}}{{{a^2} + {b^2}}} $ is

A

$\frac{x}{a} + \frac{y}{b} = 1$

B

$\frac{x}{a} + \frac{y}{b} + 1 = 0$

C

$\frac{x}{a} - \frac{y}{b} = 1$

D

$\frac{x}{a} - \frac{y}{b} + 1 = 0$

Solution

(a) From formula of tangent at a point,

$x\left( {\frac{{a{b^2}}}{{{a^2} + {b^2}}}} \right) + y\left( {\frac{{{a^2}b}}{{{a^2} + {b^2}}}} \right) $

$= \frac{{{a^2}{b^2}}}{{{a^2} + {b^2}}} $

$\Rightarrow \frac{x}{a} + \frac{y}{b} = 1$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.