यदि रेखा $ax + by = 0$ वृत्त ${x^2} + {y^2} + 2x + 4y = 0$ को स्पर्श करती है और वृत्त ${x^2} + {y^2} - 4x + 2y - 3 = 0$ का अभिलम्ब है, तब $(a,b)$ का मान है

  • A

    $(2, 1)$

  • B

    $(1, -2)$

  • C

    $(1, 2)$

  • D

    $(-1, 2)$

Similar Questions

बिन्दु $(1, 1)$ पर वृत्त $2{x^2} + 2{y^2} - 2x - 5y + 3 = 0$ के अभिलम्ब का समीकरण है

युगल स्पर्श रेखायें मूल बिन्दु से वृत्त ${x^2} + {y^2} + 20(x + y) + 20 = 0$ पर खींची गयी हैं। युगल स्पर्श रेखाओं का समीकरण है

सरल रेखा $x\cos \alpha  + y\sin \alpha  = p$, वृत्त ${x^2} + {y^2} = {a^2}$ को स्पर्श करती है, यदि

वृत्त ${x^2} + {y^2} = {a^2}$ पर रेखा $\sqrt 3 x + y + 3 = 0$ के समान्तर स्पर्श रेखाओं के समीकरण हैं

वृत्त ${x^2} + {y^2} = 50$ के उन बिन्दुओं पर, जहाँ रेखा $x + 7 = 0$ इसको काटती है, स्पर्श रेखाओं के समीकरण हैं