- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
normal
If lines $3x + 2y = 10$ and $-3x + 2y = 10$ are tangents at the extremities of latus rectum of an ellipse whose centre is origin, then the length of latus rectum of ellipse is
A
$\frac{{16}}{3}$
B
$3\sqrt 5 $
C
$4\sqrt 5 $
D
$\frac{{100}}{{27}}$
Solution

Let ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$
tangent $\frac{\mathrm{x}}{\mathrm{b}}+\frac{\mathrm{ye}}{\mathrm{b}}=1$
$\therefore \frac{b}{e}=5$
and $b=\frac{10}{3} \Rightarrow e=\frac{2}{3}$
$\Rightarrow \mathrm{a}^{2}=\frac{500}{81} \quad \therefore \mathrm{L} \cdot \mathrm{R}=\frac{2 \mathrm{a}^{2}}{\mathrm{b}}=\frac{100}{27}$
Standard 11
Mathematics