Gujarati
10-2. Parabola, Ellipse, Hyperbola
hard

If the normal at the point $P(\theta )$ to the ellipse $\frac{{{x^2}}}{{14}} + \frac{{{y^2}}}{5} = 1$ intersects it again at the point $Q(2\theta )$, then $\cos \theta $ is equal to

A

$\frac{2}{3}$

B

$ - \frac{2}{3}$

C

$\frac{3}{2}$

D

$ - \frac{3}{2}$

Solution

(b) The normal at $P(a\cos \theta ,b\sin \theta )$ is $ax\sec \theta – by\,\,{\rm{cosec}}\theta = {a^2} – {b^2}$, where ${a^2} = 14,\,\,{b^2} = 5$

It meets the curve again at $Q(2\theta )$

$i.e.$ ,$(a\cos 2\theta ,\,b\sin 2\theta )$.

$\therefore \frac{a}{{\cos \theta }}a\cos 2\theta – \frac{b}{{\sin \theta }}(b\sin 2\theta ) = {a^2} – {b^2}$

$ \Rightarrow \frac{{14}}{{\cos \theta }}\cos 2\theta – \frac{5}{{\sin \theta }}(\sin 2\theta ) = 14 – 5$

$ \Rightarrow 18{\cos ^2}\theta – 9\cos \theta – 14 = 0$

$ \Rightarrow (6\cos \theta – 7)(3\cos \theta + 2) = 0 $

$\Rightarrow \cos \theta = – \frac{2}{3}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.