If the normal at the point $P(\theta )$ to the ellipse $\frac{{{x^2}}}{{14}} + \frac{{{y^2}}}{5} = 1$ intersects it again at the point $Q(2\theta )$, then $\cos \theta $ is equal to
$\frac{2}{3}$
$ - \frac{2}{3}$
$\frac{3}{2}$
$ - \frac{3}{2}$
For $0 < \theta < \frac{\pi}{2}$, four tangents are drawn at the four points $(\pm 3 \cos \theta, \pm 2 \sin \theta)$ to the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$. If $A(\theta)$ denotes the area of the quadrilateral formed by these four tangents, the minimum value of $A(\theta)$ is
The length of the latus rectum of the ellipse $\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{49}} = 1$
Let $E_1$ and $E_2$ be two ellipses whose centers are at the origin. The major axes of $E_1$ and $E_2$ lie along the $x$-axis and the $y$-axis, respectively. Let $S$ be the circle $x^2+(y-1)^2=2$. The straight line $x+y=3$ touches the curves $S, E_1$ ad $E_2$ at $P, Q$ and $R$, respectively. Suppose that $P Q=P R=\frac{2 \sqrt{2}}{3}$. If $e_1$ and $e_2$ are the eccentricities of $E_1$ and $E_2$, respectively, then the correct expression$(s)$ is(are)
$(A)$ $e_1^2+e_2^2=\frac{43}{40}$
$(B)$ $e_1 e_2=\frac{\sqrt{7}}{2 \sqrt{10}}$
$(C)$ $\left|e_1^2-e_2^2\right|=\frac{5}{8}$
$(D)$ $e_1 e_2=\frac{\sqrt{3}}{4}$
Equation of the ellipse whose axes are the axes of coordinates and which passes through the point $(-3,1) $ and has eccentricity $\sqrt {\frac{2}{5}} $ is
If the point of intersections of the ellipse $\frac{ x ^{2}}{16}+\frac{ y ^{2}}{ b ^{2}}=1$ and the circle $x ^{2}+ y ^{2}=4 b , b > 4$ lie on the curve $y^{2}=3 x^{2},$ then $b$ is equal to: