If $A = [(x,\,y):{x^2} + {y^2} = 25]$ and $B = [(x,\,y):{x^2} + 9{y^2} = 144]$, then $A \cap B$ contains

  • A

    One point

  • B

    Three points

  • C

    Two points

  • D

    Four points

Similar Questions

The length of the axes of the conic $9{x^2} + 4{y^2} - 6x + 4y + 1 = 0$, are

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $4 x ^{2}+9 y ^{2}=36$

The pole of the straight line $x + 4y = 4$ with respect to ellipse ${x^2} + 4{y^2} = 4$ is

Two sets $A$ and $B$ are as under:

$A = \{ \left( {a,b} \right) \in R \times R:\left| {a - 5} \right| < 1 \,\,and\,\,\left| {b - 5} \right| < 1\} $; $B = \left\{ {\left( {a,b} \right) \in R \times R:4{{\left( {a - 6} \right)}^2} + 9{{\left( {b - 5} \right)}^2} \le 36} \right\}$ then : . . . . .

  • [JEE MAIN 2018]

Minimum distance between two points $P$ and $Q$ on the ellipse $\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{4} = 1$ , if difference between eccentric angles of $P$ and $Q$ is $\frac{{3\pi }}{2}$ , is