If $A = [(x,\,y):{x^2} + {y^2} = 25]$ and $B = [(x,\,y):{x^2} + 9{y^2} = 144]$, then $A \cap B$ contains
One point
Three points
Two points
Four points
If $ \tan\ \theta _1. tan \theta _2 $ $= -\frac{{{a^2}}}{{{b^2}}}$ then the chord joining two points $\theta _1 \& \theta _2$ on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}}$ $= 1$ will subtend a right angle at :
The normal at $\left( {2,\frac{3}{2}} \right)$ to the ellipse, $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{3} = 1$ touches a parabola, whose equation is
Consider an ellipse with foci at $(5,15)$ and $(21,15)$. If the $X$-axis is a tangent to the ellipse, then the length of its major axis equals
If the points of intersection of two distinct conics $x^2+y^2=4 b$ and $\frac{x^2}{16}+\frac{y^2}{b^2}=1$ lie on the curve $y^2=3 x^2$, then $3 \sqrt{3}$ times the area of the rectangle formed by the intersection points is............................
Length of common chord of the ellipse ${\frac{{\left( {x - 2} \right)}}{9}^2} + {\frac{{\left( {y + 2} \right)}}{4}^2} = 1$ and the circle ${x^2} + {y^2} - 4x + 2y + 4 = 0$