If $A = [(x,\,y):{x^2} + {y^2} = 25]$ and $B = [(x,\,y):{x^2} + 9{y^2} = 144]$, then $A \cap B$ contains
One point
Three points
Two points
Four points
The length of the axes of the conic $9{x^2} + 4{y^2} - 6x + 4y + 1 = 0$, are
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $4 x ^{2}+9 y ^{2}=36$
The pole of the straight line $x + 4y = 4$ with respect to ellipse ${x^2} + 4{y^2} = 4$ is
Two sets $A$ and $B$ are as under:
$A = \{ \left( {a,b} \right) \in R \times R:\left| {a - 5} \right| < 1 \,\,and\,\,\left| {b - 5} \right| < 1\} $; $B = \left\{ {\left( {a,b} \right) \in R \times R:4{{\left( {a - 6} \right)}^2} + 9{{\left( {b - 5} \right)}^2} \le 36} \right\}$ then : . . . . .
Minimum distance between two points $P$ and $Q$ on the ellipse $\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{4} = 1$ , if difference between eccentric angles of $P$ and $Q$ is $\frac{{3\pi }}{2}$ , is