If magnitude of average speed and average velocity over an interval of time are same, then
Particle must move with zero acceleration
Particle must move with uniform acceleration
Particle must be at rest
Particle must move in a straight line without turning back
A car moving along a straight highway with speed of $126 \;\mathrm{km} h^{-1}$ is brought to a stop within a distance of $200\; \mathrm{m}$. how long(in $seconds$) does it take for the car to stop?
A car, starting from rest, accelerates at the rate $f$ through a distance $S$, then continues at constant speed for time $t$ and then decelerates at the rate $\frac{f}{2}$ to come to rest. If the total distance traversed is $15S$, then
A body $A$ starts from rest with an acceleration $a_1$ . After $2\ seconds$ , another body $B$ starts from rest with an acceleration $a_2$ . If they travel equal distance in the $5th\ second$ , after the start of $A$ , then the ratio $a_1$ : $a_2$ is equal to
A particle of unit mass undergoes one dimensional motion such that its velocity varies according to $ v(x)= \beta {x^{ - 2n}}$, where $\beta$ and $n$ are constants and $x$ is the position of the particle. The acceleration of the particle as a function of $x$, is given by
The relation between position $( x )$ and time ( $t$ ) are given below for a particle moving along a straight line. Which of the following equation represents uniformly accelerated motion? [where $\alpha$ and $\beta$ are positive constants]