3 and 4 .Determinants and Matrices
normal

If matrix $A = \left[ {\begin{array}{*{20}{c}}
{\sin \theta }&{\cos ec\theta }&1\\
{\cos ec\theta }&1&{\sin \theta }\\
1&{\sin \theta }&{\cos ec\theta }
\end{array}} \right]$ is a non invertible matrix, then possible value of $'\theta'$ is 

$($ where $n \in I)$

A

$n\pi  + {( - 1)^n}\frac{\pi }{4}$

B

$n\pi  + {( - 1)^n}\frac{\pi }{3}$

C

$n\pi  + {( - 1)^n}\frac{\pi }{6}$

D

$2n\pi+\frac{\pi}{2}$

Solution

$|A|=0 \Rightarrow$  either  $\sin \theta  = \cos ec\theta  = 1$

$\Rightarrow \theta=2 n \pi+\frac{\pi}{2}$ or $\sin \theta  + \cos ec\theta  + 1 = 0$

Not possible.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.