જો વેગમાન $(P)$, ક્ષેત્રફળ $(A)$ અને સમય $(T)$ ને મૂળભૂત રાશિ લેવામાં આવે તો ઉર્જાનું પારિમાણિક સૂત્ર શું થાય?
$\left[ {P{A^{ - 1}}T} \right]$
$\left[ {{P^2}AT} \right]$
$\left[ {P{A^{ - 1/2}}T} \right]$
$\left[ {P{A^{1/2}}{T^{ - 1}}} \right]$
$t$ સમયે કણનું સ્થાન $x(t) = \left( {\frac{{{v_0}}}{\alpha }} \right)\,\,(1 - {e^{ - \alpha t}})$ દ્વારા આપી શકાય છે, જ્યાં ${v_0}$ એ અચળાંક છે અને $\alpha > 0$. તો ${v_0}$ અને $\alpha $ ના પરિમાણ અનુક્રમે ............ થાય.
નીચે પૈકી કયું સમીકરણ પારિમાણિક રીતે ખોટું થાય?
જ્યાં $t=$સમય, $h=$ઊંચાઈ, $s=$પૃષ્ઠતાણ, $\theta=$ખૂણો, $\rho=$ઘનતા, $a, r=$ત્રિજ્યા, $g=$ગુરુત્વ પ્રવેગ, ${v}=$કદ, ${p}=$દબાણ, ${W}=$કાર્ય, $\Gamma=$ટોર્ક, $\varepsilon=$પરમિટિવિટી, ${E}=$વિદ્યુતક્ષેત્ર, ${J}=$પ્રવાહઘનતા, ${L}=$લંબાઈ
ઊર્જા $U = \frac{{A\sqrt x }}{{{x^2} + B}},\,$ હોય,તો $AB$ નું પારિમાણીક સૂત્ર
સાચી જોડણી પસંદ કરો
સૂચિ I |
સૂચિ II |
---|---|
$(i)$ ક્યુરી |
$(A)$ $ML{T^{ - 2}}$ |
$(ii)$ પ્રકાશવર્ષ |
$(B)$ $M$ |
$(iii)$ દ્વિધ્રુવીય તીવ્રતા |
$(C)$ પરિમાણરહિત |
$(iv)$ આણ્વિય વજન |
$(D)$ $T$ |
$(v)$ ડેસીબલ |
$(E)$ $M{L^2}{T^{ - 2}}$ |
$(F)$ $M{T^{ - 3}}$ |
|
$(G)$ ${T^{ - 1}}$ |
|
$(H)$ $L$ |
|
$(I)$ $ML{T^{ - 3}}{I^{ - 1}}$ |
|
$(J)$ $L{T^{ - 1}}$ |
વિધાન: પ્રવાહીનું વિશિષ્ટ ગુરુત્વાકર્ષણ એ પરિમાણરહિત રાશિ છે.
કારણ: તે પ્રવાહી ની ઘનતા નો પાણીની ઘનતા સાથે નો ગુણોત્તર છે