If statement $(p \rightarrow q) \rightarrow (q \rightarrow r)$ is false, then truth values of statements $p,q,r$ respectively, can be-
$FTF$
$TTT$
$FFF$
$FTT$
The contrapositive of $(p \vee q) \Rightarrow r$ is
Let $F_{1}(A, B, C)=(A \wedge \sim B) \vee[\sim C \wedge(A \vee B)] \vee \sim A$ and $F _{2}( A , B )=( A \vee B ) \vee( B \rightarrow \sim A )$ be two logical expressions. Then ...... .
If $q$ is false and $p\, \wedge \,q\, \leftrightarrow \,r$ is true, then which one of the following statements is a tautology?
Statement $p$ $\rightarrow$ ~$q$ is false, if
Which of the following is not a statement