The logically equivalent of $p \Leftrightarrow q$ is :-
$(p \wedge q) \vee (p \wedge q)$
$(p \Rightarrow q) \wedge (q \Rightarrow p)$
$(p \wedge q) \vee (q \Rightarrow p)$
$(p \wedge q) \Rightarrow (q \vee p)$
The contrapositive of the statement “If you are born in India, then you are a citizen of India”, is
Negation of $p \wedge( q \wedge \sim( p \wedge q ))$ is
The Boolean expression $(\mathrm{p} \wedge \mathrm{q}) \Rightarrow((\mathrm{r} \wedge \mathrm{q}) \wedge \mathrm{p})$ is equivalent to :
Which statement given below is tautology ?
The propositions $(p \Rightarrow \;\sim p) \wedge (\sim p \Rightarrow p)$ is a