If the $9^{th}$ term of an $A.P.$ be zero, then the ratio of its $29^{th}$ and $19^{th}$ term is

  • A

    $1:2$

  • B

    $2:1$

  • C

    $1:3$

  • D

    $3:1$

Similar Questions

Between $1$ and $31, m$ numbers have been inserted in such a way that the resulting sequence is an $A. P.$ and the ratio of $7^{\text {th }}$ and $(m-1)^{\text {th }}$ numbers is $5: 9 .$ Find the value of $m$

If the first term of an $A.P.$ is $3$ and the sum of its first $25$ terms is equal to the sum of its next $15$ terms, then the common difference of this $A.P.$ is :

  • [JEE MAIN 2020]

If ${a_1},\,{a_2},....,{a_{n + 1}}$ are in $A.P.$, then $\frac{1}{{{a_1}{a_2}}} + \frac{1}{{{a_2}{a_3}}} + ..... + \frac{1}{{{a_n}{a_{n + 1}}}}$ is

If  ${\log _5}2,\,{\log _5}({2^x} - 3)$ and  ${\log _5}(\frac{{17}}{2} + {2^{x - 1}})$ are in $A.P.$ then the value of $x$ is :-

If $a_1, a_2, a_3, …….$ are in $A.P.$ such that $a_1 + a_7 + a_{16} = 40$, then the sum of the first $15$ terms of this $A.P.$ is

  • [JEE MAIN 2019]