Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=n \frac{n^{2}+5}{4}$
Substituting $n=1,2,3,4,5,$ we obtain
$a_{1}=1 \cdot \frac{1^{2}+5}{4}=\frac{6}{4}=\frac{3}{2}$
$a_{2}=2 \cdot \frac{2^{2}+5}{4}=2 \cdot \frac{9}{4}=\frac{9}{2}$
$a_{3}=3 \cdot \frac{3^{2}+5}{4}=3 \cdot \frac{14}{4}=\frac{21}{2}$
$a_{4}=4 \cdot \frac{4^{2}+5}{4}=21$
$a_{5}=5 \cdot \frac{5^{2}+5}{4}=5 \cdot \frac{30}{4}=\frac{75}{2}$
Therefore, the required terms are $\frac{3}{2}, \frac{9}{2}, \frac{21}{2}, 21$ and $\frac{75}{2}$
If $\log 2,\;\log ({2^n} - 1)$ and $\log ({2^n} + 3)$ are in $A.P.$, then $n =$
For $p, q \in R$, consider the real valued function $f ( x )=( x - p )^{2}- q , x \in R$ and $q >0$. Let $a _{1}, a _{2}, a _{3}$ and $a _{4}$ be in an arithmetic progression with mean $P$ and positive common difference. If $\left| f \left( a _{ i }\right)\right|=500$ for all $i=1,2,3,4$, then the absolute difference between the roots of $f ( x )=0$ is.
If the sum of the series $54 + 51 + 48 + .............$ is $513$, then the number of terms are
If $19^{th}$ terms of non -zero $A.P.$ is zero, then its ($49^{th}$ term) : ($29^{th}$ term) is
Let $3,7,11,15, \ldots, 403$ and $2,5,8,11, \ldots, 404$ be two arithmetic progressions. Then the sum, of the common terms in them, is equal to.....................