Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=n \frac{n^{2}+5}{4}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Substituting $n=1,2,3,4,5,$ we obtain

$a_{1}=1 \cdot \frac{1^{2}+5}{4}=\frac{6}{4}=\frac{3}{2}$

$a_{2}=2 \cdot \frac{2^{2}+5}{4}=2 \cdot \frac{9}{4}=\frac{9}{2}$

$a_{3}=3 \cdot \frac{3^{2}+5}{4}=3 \cdot \frac{14}{4}=\frac{21}{2}$

$a_{4}=4 \cdot \frac{4^{2}+5}{4}=21$

$a_{5}=5 \cdot \frac{5^{2}+5}{4}=5 \cdot \frac{30}{4}=\frac{75}{2}$

Therefore, the required terms are $\frac{3}{2}, \frac{9}{2}, \frac{21}{2}, 21$ and $\frac{75}{2}$

Similar Questions

Find the $20^{\text {th }}$ term in the following sequence whose $n^{\text {th }}$ term is $a_{n}=\frac{n(n-2)}{n+3}$ 

Find the sum of odd integers from $1$ to $2001 .$

Find the sum of all two digit numbers which when divided by $4,$ yields $1$ as remainder.

Let ${S_n}$ denotes the sum of $n$ terms of an $A.P.$ If ${S_{2n}} = 3{S_n}$, then ratio $\frac{{{S_{3n}}}}{{{S_n}}} = $

The Fibonacci sequence is defined by

$1 = {a_1} = {a_2}{\rm{ }}$ and ${a_n} = {a_{n - 1}} + {a_{n - 2}},n\, > \,2$

Find $\frac{a_{n+1}}{a_{n}},$ for $n=1,2,3,4,5$