Let $S_{1}$ be the sum of first $2 n$ terms of an arithmetic progression. Let, $S_{2}$ be the sum of first $4n$ terms of the same arithmetic progression. If $\left( S _{2}- S _{1}\right)$ is $1000,$ then the sum of the first $6 n$ terms of the arithmetic progression is equal to:

  • [JEE MAIN 2021]
  • A

    $1000$

  • B

    $7000$

  • C

    $5000$

  • D

    $3000$

Similar Questions

If the sum of three numbers of a arithmetic sequence is $15$ and the sum of their squares is $83$, then the numbers are

If the sum of the first $n$ terms of a series be $5{n^2} + 2n$, then its second term is

Let $a_1, a_2, a_3, \ldots$ be an arithmetic progression with $a_1=7$ and common difference $8$ . Let $T_1, T_2, T_3, \ldots$ be such that $T_1=3$ and $T_{n+1}-T_n=a_n$ for $n \geq 1$. Then, which of the following is/are $TRUE$ ?

$(A)$ $T_{20}=1604$

$(B)$ $\sum_{ k =1}^{20} T_{ k }=10510$

$(C)$ $T_{30}=3454$

$(D)$ $\sum_{ k =1}^{30} T_{ k }=35610$

  • [IIT 2022]

Write the first five terms of the following sequence and obtain the corresponding series :

$a_{1}=-1, a_{n}=\frac{a_{n-1}}{n}, n\, \geq\, 2$

Three numbers are in $A.P.$ whose sum is $33$ and product is $792$, then the smallest number from these numbers is