If the change in the value of ' $g$ ' at a height ' $h$ ' above the surface of the earth is same as at a depth $x$ below it, then ( $x$ and $h$ being much smaller than the radius of the earth)
$x=h$
$x=2 h$
$x=\frac{h}{2}$
$x=h^2$
Two spheres of masses $m$ and $M$ are situated in air and the gravitational force between them is $F.$ The space around the masses is now filled with a liquid of specific gravity $3.$ The gravitational force will now be
Figure shows the variation of the gravitatioal acceleration $a_g$ of four planets with the radial distance $r$ from the centre ofthe planet for $r \ge $ radius of the planet. Plots $1$ and $2$ coincide for $r \ge {R_2}$ and plots $3$ and $4$ coincide for $r \ge {R_4}$ . The sequence of the planets in the descending order of their densities is
The period of a satellite, in a circular orbit near an equatorial plane, will not depend on
$Assertion$ : The escape speed does not depend on the direction in which the projectile is fired.
$Reason$ : Attaining the escape speed is easier if a projectile is fired in the direction the launch site is moving as the earth rotates about its axis.
A thin rod of length $L$ is bent to form a semicircle. The mass of rod is $M.$ What will be the gravitational potential at the centre of the circle?